Arsip Blog

Senin, 23 Februari 2015

GERAK PARABOLA


Gerak parabola adalah gerak yang membentuk sudut tertentu terhadap bidang horizontal. Pada gerak parabola, gesekan diabaikan, dan gaya yang bekerja hanya gaya berat/percepatan gravitasi. Gerak parabola.png
Pada titik awal,
Vo_{x} = Vo \times \cos \alpha
Vo_{y} = Vo \times \sin \alpha
Pada titik A (t = ta):
Va_{x} = Vo_{x} = Vo \times \cos \alpha
Va_{y} = Vo_{y} - g \times t_{a}
Letak/posisi di A:
X_{a} = Vo_{x} \times t_{a}
Y_{a} = Vo_{y} \times t_{a} - 1/2 g {t_{a}^2}
Titik tertinggi yang bisa dicapai (B):
h_{max} = \frac {{(Vo\times\sin\alpha})^2} {2g} = \frac {{(Vo^2\times\sin^2\alpha})} {2g}
Waktu untuk sampai di titik tertinggi (B) (tb):
 V_{y}=0
 V_{y}= Vo_{y} - g t
 0= Vo \sin \alpha - g t
t_{b} = \frac {{(Vo\times\sin\alpha})} {g} = \frac {Vo_{y}} {g}
Jarak mendatar/horizontal dari titik awal sampai titik B (Xb):
X_{b} = Vo_{x} \times t_{b}
X_{b} = Vo \cos \alpha \times (\frac {{(Vo\times\sin\alpha})} {g})
X_{b} = \frac {{Vo^2} \times \sin 2\alpha} {2g}
Jarak vertikal dari titik awal ke titik B (Yb):
Y_{b} = \frac {Vo_{y}^2} {2g}
Y_{b} = \frac {{Vo^2} \times \sin^2 \alpha} {2g}
Waktu untuk sampai di titik C:
t_{total} = \frac {{(2 Vo\times\sin\alpha})} {g} = \frac {2 Vo_{y}} {g}
Jarak dari awal bola bergerak sampai titik C:
X_{maks} = Vo{x} \times t_{total}
X_{maks} = Vo \times \cos \alpha \times \frac {{(2 Vo\times\sin\alpha})} {g}
X_{maks} = \frac {{Vo^2} \times \sin 2\alpha} {g}
COPYRIGHT: WIKIPEDIA
http://id.wikibooks.org/wiki/Rumus-Rumus_Fisika_Lengkap/Gerak

Tidak ada komentar:

Posting Komentar